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A B S T R A C T   

The effects of normal aging on functional connectivity (FC) within various brain networks of gray matter (GM) 
have been well-documented. However, the age effects on the networks of FC between white matter (WM) and 
GM, namely WM-GM FC, remains unclear. Evaluating crucial properties, such as global efficiency (GE), for a 
WM-GM FC network poses a challenge due to the absence of closed triangle paths which are essential for 
assessing network properties in traditional graph models. In this study, we propose a bipartite graph model to 
characterize the WM-GM FC network and quantify these challenging network properties. Leveraging this model, 
we assessed the WM-GM FC network properties at multiple scales across 1,462 cognitively normal subjects aged 
22–96 years from three repositories (ADNI, BLSA and OASIS-3) and investigated the age effects on these prop
erties throughout adulthood and during late adulthood (age ≥70 years). Our findings reveal that (1) heteroge
neous alterations occurred in region-specific WM-GM FC over the adulthood and decline predominated during 
late adulthood; (2) the FC density of WM bundles engaged in memory, executive function and processing speed 
declined with age over adulthood, particularly in later years; and (3) the GE of attention, default, somatomotor, 
frontoparietal and limbic networks reduced with age over adulthood, and GE of visual network declined during 
late adulthood. These findings provide unpresented insights into multi-scale alterations in networks of WM-GM 
functional synchronizations during normal aging. Furthermore, our bipartite graph model offers an extendable 
framework for quantifying WM-engaged networks, which may contribute to a wide range of neuroscience 
research.   

1. Introduction 

Normal aging has been associated with disrupted resting-state 
functional connectivity (rsFC) within various brain networks (Jock
witz and Caspers, 2021). The default mode network (DMN) is the most 

extensively investigated network in age-related studies. Researchers 
consistently observe lower rsFC measures with older age within the 
DMN, as well as attention networks (Andrews-Hanna et al., 2007; Betzel 
et al., 2014; Damoiseaux et al., 2008; Geerligs et al., 2015; Koch et al., 
2010; Tomasi and Volkow, 2012; Zonneveld et al., 2019). In contrast, 
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opposite changes related to age have been reported in the frontoparietal 
network (FPN) (Betzel et al., 2014; Chan et al., 2014; Jockwitz and 
Caspers, 2021; Mowinckel et al., 2012), somatomotor network (SMN) 
(Stumme et al., 2020; Tomasi and Volkow, 2012), and visual network 
(VN) (Stumme et al., 2020; Varangis et al., 2019; Zonneveld et al., 
2019). The age-related functional alterations in the limbic network (LN) 
(Achard and Bullmore, 2007) are less conclusive (See Table S1 for a mini 
literature summary). Notably, these age-related studies have limited 
their analyses to gray matter (GM) regions, without considering the 
other crucial functional complement in brain networks – white matter 
(WM). 

Functional MRI (fMRI) signals of WM have been ignored for decades, 
partly because they are weaker due to the lower blood volume and flow 
in WM compared to GM (Helenius et al., 2003; Rostrup et al., 2000). 
Recently, a growing corpus of evidence indicates that blood 
oxygenation-level dependent (BOLD) fluctuations in fMRI signals from 
WM are reliably measurable using WM-tailored methods (see (Gore 
et al., 2019) for a review). For example, we recently showed that BOLD 
activations in WM can be measured voxel-wise by detecting increases in 
synchronization of fMRI signals along WM fibers instead of assuming a 
specific hemodynamic response to neural activity as is typical in GM 
activation mapping (Zhao et al., 2022b, 2022a). Extending beyond the 
voxel level, we have demonstrated that temporal correlations of resting 
state fMRI signals between WM and GM regions (i.e., WM-GM rsFC) are 
functionally relevant (Ding et al., 2018). Studies on clinical populations 
have confirmed that region-specific WM-GM rsFC is sensitive to a set of 
brain disorders, particularly age-related diseases such as Alzheimer’s 
disease (AD) (Gao et al., 2020). However, whether and how the WM-GM 
rsFC metrics and networks change during normal aging remains unclear. 

Investigating changes in the WM-GM rsFC networks poses a chal
lenge due to the inadequacy of the conventional graph framework 
commonly used for analyzing GM-GM connection networks. This 
framework is not suited to efficiently characterize the WM-GM rsFC 
network and evaluate its important network properties. Specifically, 
unlike the GM-GM connection network where all nodes are GM nodes, 
the WM-GM rsFC network encompasses two distinct groups of nodes (i. 
e., WM and GM nodes) connected solely by inter-group links (i.e., WM- 
GM rsFC). The absence of within-group links (i.e., WM-WM and GM-GM 
rsFC) in the WM-GM FC network leads to the absence of closed trian
gular paths among any three nodes in the network (Borgatti and Everett, 
1997), making it challenging to evaluate important network properties 
such as global efficiency (GE). Introducing WM-WM and/or GM-GM 
rsFC links into the WM-GM network may seem as a potential solution 
to generate triangular paths, but the validity of this approach is ques
tionable due to differences in the underlying neurobiological mecha
nisms and amplitudes of the three types of rsFC, especially given the 
observations that BOLD fluctuation in WM is weaker and delayed than in 
GM (Gore et al., 2019). Moreover, mixed types of rsFC links make the 
derived network properties more difficult to interpret. 

To address this methodological challenge, we propose a bipartite 
graph model that characterizes the unique topology of a WM-GM rsFC 
network and introduce a projection-based solution that evaluates its 
challenging network properties. Taking advantage of this novel method, 
we aim to investigate the age effects on WM-GM network properties 
during normal aging. Specifically, we assessed rsFC between atlas- 
defined WM bundles and GM parcels in a large cohort of cognitively 
healthy adults (N=1462, age=22–96 years) combined from three da
tabases. We then measured FC density (FCD) of the WM bundles and GE 
of six predefined functional networks (i.e., DMN, FPN, LN, AN, SMN and 
VN) using our proposed graph model. Finally, we quantified age asso
ciations with these multi-scale measures during both entire adulthood 
and late adulthood. Our proposed model provides a framework for 
evaluating the network properties of the WM-GM rsFC graph, with po
tential contributions to a wide range of neuroscience research. Our an
alyses represent the first exploration of the multi-scale alterations in 
WM-GM rsFC networks during normal aging, enhancing our 

understanding of how WM-engaged brain networks age. 

2. Methods 

2.1. Data 

Data in our study were aggregated from three databases: Alzheimer’s 
Disease Neuroimaging Initiative – stages 2 and 3 (ADNI-2&3, https: 
//adni.loni.usc.edu), Baltimore Longitudinal Study of Aging (BLSA, 
https://www.blsa.nih.gov) and Open Access Series of Imaging Studies – 
stage 3 (OASIS-3, https://www.oasis-brains.org). From each database, 
all baseline resting state fMRI (rsfMRI) images of cognitively normal 
subjects and their corresponding T1-weighted (T1w) images were 
downloaded in deidentified form, as well as demographic information, 
with IRB approval. A total of 1462 subjects (836 female, aged 22 to 96 
years with mean of 69.1 ± 12.5 years) remained for final analyses (after 
preprocessing, quality control and harmonization described below). 
Please refer to supplementary method S1 for detailed descriptions of the 
three databases and supplementary Table S2 for imaging parameters and 
age distributions across all acquisition sites. 

2.2. Preprocessing and quality control 

An automatic high-performance pipeline was established to prepro
cess the large-scale data, as described extensively in our previous study 
(Gao et al., 2023; Li et al., 2023). Briefly, the rsfMRI images were cor
rected for slice timing and head motion effects. Consequently, 24 
motion-related parameters (Friston et al., 1996) and the mean cere
brospinal fluid (CSF) signal were regressed out. The data were detrended 
and temporally filtered with a passband frequency of 0.01 - 0.1 Hz. All 
these steps were implemented using house-modified modules within the 
Data Processing Assistant for Resting-State fMRI toolbox (Yan et al., 
2016). Tissue probability maps (TPM) for GM, WM and CSF were 
derived by segmenting the T1w images using the Computational Anat
omy Toolbox (CAT12, https://neuro-jena.github.io/cat) (Gaser et al., 
2022). Then, the rsfMRI data and TPMs were spatially normalized into 
MNI space using co-registration and normalization functions in SPM12 
(https://www.fil.ion.ucl.ac.uk/spm/software/spm12) and CAT12. To 
suppress partial volume influences between WM and GM, no spatial 
smoothing was performed in the preprocessing. Of note, a test-retest 
experiment performed on OASIS-3 data (N=1000) confirmed the reli
ability of our pipeline, as evidenced by the intraclass correlation co
efficients between rsFC of the test and retest groups (refer to (Gao et al., 
2023) for more details). 

The preprocessed results underwent a manual quality control pro
cedure. The following passing criteria were applied: 1) successful gen
eration of all the preprocessed results; 2) maximal translations and 
rotations of head motion less than 2 mm and 2◦, respectively; 3) mean 
frame-wise displacement (FD) less than 0.5 mm (Power et al., 2012; Yan 
et al., 2013); and 4) expert visual inspection confirming acceptable 
spatial normalization. 

2.3. Functional connectivity and harmonization 

To generate the WM-GM rsFC matrix for each subject, Pearson’s 
correlation coefficients were computed between regional time courses of 
fMRI signals from predefined WM bundles and GM parcels in MNI space. 
The WM bundles were defined by the JHU’s ICBM-DTI-81 WM atlas 
(Mori et al., 2008) merged with refined cerebellar bundles delineated by 
van Baarsen et al. (van Baarsen et al., 2016). Due to poor signal quality 
and dropout, two small WM bundles (i.e., bilateral tapetums) were 
excluded from further analyses. The GM parcels were derived from the 
PickAtlas (Lancaster et al., 2000) which labeled Broadman areas. The 
atlas-defined WM and GM regions were further constrained within the 
whole-brain WM and GM masks of individual subjects, respectively. 
These masks were generated by thresholding the WM and GM TPMs at 
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0.8 to prevent signal contamination between WM and adjacent GM. 
To reduce potential biases and non-biological influences of acquisi

tion site effects, a ComBat (Johnson et al., 2007) harmonization pro
cedure was performed on the rsFC values using the neuroComBat R 
package (https://github.com/Jfortin1/neuro Combat_Rpackage). Age 
and sex were included as covariates. Briefly, the ComBat model de
scribes the rsFC values in the form yijv = αv + Xijβv + γiv + δivεijv where 
yijv is the rsFC of acquisition site i, subject j, and WM-GM pair v. The term 
αv is the average rsFC of pair v, and Xij is a design matrix for the cova
riates of interest. The terms γiv and δiv represent the additive and mul
tiplicative site effects, respectively. εijv is the residual term. The 

harmonized rsFC values were then computed as yComBat
ijv =

yijv − α̂v − Xij β̂v − γ∗iv
δ∗iv 

+ α̂v + Xij β̂v, where γ∗iv and δ∗iv are the empirical Bayes estimates. Of note, 
the inclusion of age and sex as covariates in the harmonization process 
ensured retention of the rsFC variations associated with age and sex. Any 
single subject within one site was removed before this procedure. Pre
vious studies have demonstrated that ComBat adjustment outperforms 
methods that merely include site as a nuisance covariate (Fortin et al., 
2018; Yu et al., 2018). 

2.4. Bipartite graph and WM-GM rsFC connectome measures 

A bipartite graph, also known as a two-mode graph or bigraph, G =

(W,G,E,B) comprises two distinct groups of nodes, W (|W| = m) and G 
(|G| = n), with a set of links, E, connecting nodes between the two 
groups (Newman et al., 2001). In our specific context, the WM bundles 
and GM parcels were designated as the two groups of nodes, represented 
by wi ∈ W and gj ∈ G, respectively. The WM-GM rsFC were designated as 
the undirected weighted link, eij, connecting nodes wi and gj. Of note, 
there are no links between any within-group nodes. This bipartite graph 
can be efficiently represented by a weighted biadjacency matrix, B, 
where the element at the ith row (corresponding to wi) and the jth col
umn (corresponding to gj), bij, represents the weight of link eij, as illus
trated by a simple model in Fig. 1A. Based on this weighted bipartite 
graph, the following attributes were computed to measure connectome 
properties of WM-GM rsFC. Refer to supplementary method S2 for more 
details. 

2.4.1. FC density of WM bundle 
FC density (FCD) of a WM bundle, wi, is defined as the averaged rsFC 

between the WM bundle and all GM nodes. This measurement quantified 
the rsFC strength of each WM bundle connections to the entire cerebral 
cortex. From the perspective of classic graph analysis, the FCD of wi can 
be considered a node strength (Barrat et al., 2004) normalized by the 

number of GM nodes, formalized as follows: 

FCD(wi) =
1
n

∑n

j
bij. (1)  

2.4.2. Global efficiency of functional network 
Global efficiency (GE) is an important system-level property, that 

measures the overall efficiency of information integration in a brain 
functional network. However, it cannot be directly derived from the 
WM-GM rsFC graph due to the absence of triangular paths. To address 
this issue, we projected the original bipartite network to a directed 
weighted unipartite network where only GM nodes were explicitly 
present and WM nodes were hidden. In this projected network, two GM 
nodes (gj and gj′) were considered connected only if they shared at least 
one common WM node, wp, in the original bipartite network. The ad
jacency matrix of the projected network, denoted as A = (ajj′)n×n 

(Fig. 1A), was obtained by transforming from the biadjacency matrix B 
into A using the following definition: 

ajj′ =

{∑

p
bpj

(
bpj ∕= 0, bpj′ ∕= 0, j ∕= j′

)

0 (j = j′)
. (2) 

Based on this transformation, the connectivity from a starting GM 
node, gj, to an ending GM node, gj′, in the projected network was 
determined by summing the original rsFC between the starting GM node 
and all the WM nodes shared by the two GM nodes. Therefore, we refer 
to this projected network as the “WM-mediated GM-GM network”. To 
provide a simplified example of the bipartite-to-unipartite projection for 
easier understanding, consider Fig. 1B, where GM nodes g3 and g4 share 
two common WM nodes w3 and w4 in the bipartite graph. Consequently, 
the WM-mediated link from g3 towards g4 is weighted by the sum of b33 

and b43, denoted as a34 in the projected graph. Likewise, the weight of 
the link from g4 towards g3 is the sum of b34 and b44, denoted as a43. 

All GM nodes were categorized into six functional networks ac
cording to Yeo’s functional parcellation of cerebral cortex (Yeo et al., 
2011), including DMN, FPN, LN, AN (combination of dorsal and ventral 
ANs), SMN and VN, as shown in Fig. 1C. Specifically, each GM parcel 
was assigned to one of the networks depending on which network had 
the largest overlap with the parcel. The GE of the kth functional network 
Nk, was then calculated based on the following equation: 

GE(Nk) =
1

nk(nk − 1)
∑nk

j

∑nk

j′,j′∕=j

(
djj′

)− 1
(nk = num of nodes in Nk), (3)  

where djj′ is the shortest weighted path between gj and gj′ described 

Fig. 1. | A conceptual model illustrating bipartite graph, graph 
projection, and design of network analysis. (A) Projection from a 
WM-GM rsFC weighted bipartite graph to a WM-mediated weighted 
unipartite graph and the corresponding transformation of biadjacency 
matrix towards adjacency matrix. (B) An example to show the algo
rithm in projection. (C) Design of functional network analysis based on 
graph projection. Note that although only GM nodes are present in the 
projected graph, the inter-node connections in the graph are still 
determined by the WM-GM rsFC.   
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elsewhere (Latora and Marchiori, 2001; Rubinov and Sporns, 2010). The 
GE value is typically the inverse of the average shortest path length in 
the network. In our context, it quantifies the level of integration of the 
WM-mediated GM-GM network. 

Prior to the network analysis, each individual bipartite graph was 
threshold at 0.1 to remove spurious WM-GM rsFC. The lower value of 
0.1 was chosen as a threshold because WM-GM rsFC tends to be lower 
than conventional GM-GM rsFC. In the validation analysis, we assessed 
the potential influence of the rsFC threshold on age effects on network 
properties by considering two adjacent thresholds 0.05 and 0.15. 

2.5. Statistical analysis 

To investigate age effects on WM functional measures, we modeled 
the trajectory of rsFC for each WM-GM pair or FCD for each WM bundle 
over the entire adulthood using multiple linear regression. We consid
ered both linear and quadratic models with sex and head motion (i.e., 
mean Power’s FD, Power et al., 2012) as covariates: 

y = βlin
0 + βlin

1 × age + βlin
2 × sex + βlin

3 × FD + ϵ (4)  

and 

y = βqua
0 + βqua

1 × age + βqua
2 × age2 + βqua

3 × sex + βqua
4 × FD + ϵ, (5)  

where y is rsFC or FCD. T-tests on parameter βlin
1 or βqua

2 were conducted 
to ascertain whether the models exhibited statistically significant age 
effects. The resulting p-value were adjusted for multiple comparisons 
using the false discovery rate (FDR) (Benjamini and Hochberg, 1995), 
yielding q-values. The model that best described the adulthood trajec
tory was selected based on Akaike information criterion (Akaike, 1974). 
We reported standardized βlin

1 or βqua
2 of the best-fit model for each rsFC 

or FCD of bundle in the results section. For rsFC or FCD exhibiting a 
significant quadratic age effect, the peak age was further determined as 
follows: 

agepeak =
− βqua

1

2βqua
2

(6) 

Moreover, we further modeled the age effects in late adulthood (age 
≥ 70 years) because the age effect might be more manifest in older 
adults. 

The age effects on the GE of each WM-mediated functional network 
were modeled with multiple linear regression, as depicted in Eq. (4), and 

the p-values were corrected for 6 comparisons using Bonferroni 
correction. 

3. Results 

3.1. Demography and harmonization 

A total of 1462 subjects (836 female, 57%) were included in the final 
analyses after quality control and harmonization. The age range of the 
subjects spanned from early and middle adulthood, with a denser dis
tribution in late adulthood (Fig. 2A). Specifically, the numbers of sub
jects across decades are 15 for 22–29 years, 27 for 30–39 years, 74 for 
40–49 years, 171 for 50–59 years, 399 for 60–69 years, 498 for 70–79 
years, 253 for 80–90 years and 25 for 90–96 years. 

Possible site-effects on WM-GM rsFC were effectively corrected by 
the harmonization process which mitigated mean and variance differ
ences across 53 sites, as illustrated in the comparison of rsFC before and 
after harmonization for a randomly selected WM-GM pair (Fig. 2B). The 
group-level WM-GM rsFC matrices for the three databases after 
harmonization (Fig. 2C) exhibited highly similar patterns, indicating the 
stability of WM-GM functional connectivity architectures at rest and the 
reliability of our pipeline for measuring rsFC within a large cohort from 
multiple databases. Moreover, compared to the ADNI-2&3 and BLSA 
(age=76±7 and 67±15 years, respectively) groups, the rsFC in the 
OASIS-3 group mean matrix (age=68±9 years) appears sharper, as 
evidenced by slightly hotter red and cooler blue colors, Fig. 2C), sug
gesting preserved age-related variances after harmonization. 

3.2. Age effects on rsFC of WM-GM pairs 

Our model fitting results revealed three major significant age effects 
(q < 0.05) on rsFC between atlas-defined WM bundles and GM parcels 
(Fig. 3D) over adulthood: a negative linear age effect (βlin

1 < 0), a positive 
linear age effect (βlin

1 > 0) and an inverted-U-shaped age effect (βqua
2 < 0) 

(Fig. 3A). The proportions of WM-GM pairs with the three effects among 
all pairs with significant age effects were 20.6%, 41.5% and 37.6%, 
respectively (Fig. 3C). The peak ages of the inverted-U-shaped age ef
fects ranged from 46 to 80 years (mean of 63±6 years, Fig. S1). By 
contrast, rsFC during late adulthood exhibited predominantly negative 
linear age effects (99.2%) with only a small number of positive linear 
effects (0.8%, Fig. 3BC). Comparing the distributions of age effects be
tween adulthood and late adulthood suggests a more pronounced 

Fig. 2. | Histogram of age, comparison before and after harmonization, and mean WM-GM rsFC matrices of three databases after harmonization. (A) Age 
distributions of all subjects analyzed in our study. The distributions of the three databases are stacked. (B) Comparison of summary statistics (including median, 0.25 
and 0.75 quartiles, nonoutlier minimum and maximum, and outliers) of a randomly selected WM-GM rsFC for 53 acquisition sites before and after harmonization. 
The red diamond indicates the mean rsFC within a site. The semi-transparent gray line serves as a reference for the mean rsFC over all sites. (C) Group mean matrices 
of WM-GM rsFC for the three databases after site-effect removal, exhibiting highly repeated patterns. The black circles indicate the location of the selected rsFC 
exanimated in (B). 
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decline in rsFC during late adulthood (Fig. 3C). This observation is 
further supported by the rsFC of three representative WM-GM pairs 
(boxes i, ii and iii in Fig. 1A and 1B): the rsFC between the right 
cingulum beneath the cingulate gyrus (CGG) and right Brodmann area 
(BA) 38, between the splenium of corpus callosum (SCC) and BA47, and 
between the left bilateral corticospinal tract (CST) and right BA4. They 
exhibited negative linear (βlin

1 = − 0.19, q < 0.01), positive linear (βlin
1 =

0.20, q < 0.01) and inverted-U-shaped quadratic age effects (βqua
2 =

− 0.05, q < 0.05, peak age = 64 years) over the entire adult lifespan, 
respectively, but showed negative (βlin

1 = − 0.14, q < 0.01), insignificant 
(βlin

1 = − 0.005, q = 0.29) and negative linear (βlin
1 = − 0.14, q < 0.01) age 

effects during late adulthood, respectively. 

3.3. Age effects on FCD of WM bundles 

Across the entire adult lifespan, three significant age effects were 
observed on FCD of WM bundles (inner circle in Fig. 4A and Table S3). 
Specifically, eight WM bundles exhibited negative linear age-related 
variations in FCD (q < 0.05), including the fornix (FX) (βlin

1 = − 0.12, q 
< 0.01, Fig. 4B), bilateral CGG (βlin

1 = − 0.08, q < 0.01 and βlin
1 = − 0.11, 

q < 0.01 for the left and right bundles, respectively), right middle 

cerebellar peduncles (MCBP) (βlin
1 = − 0.08, q = 0.01), right external 

capsules (EC) (βlin
1 = − 0.08, q < 0.01), left uncinate fasciculus (UF) (βlin

1 

= − 0.08, q = 0.01), right inferior cerebellar peduncles (ICBP) (βlin
1 =

− 0.07, q = 0.02) and right fornix cres (FXC) (βlin
1 = − 0.07, q = 0.02). 

Another nine WM bundles also exhibited linear age effects but with 
positive polarity, including the SCC (βlin

1 = 0.17, q < 0.01, Fig. 4B), 
bilateral sagittal stratum (SS) (βlin

1 = 0.13, q < 0.01 and βlin
1 = 0.08, q <

0.01), left posterior thalamic radiation (PTR) (βlin
1 = 0.12, q < 0.01), 

bilateral anterior corona radiata (ACR) (βlin
1 = 0.08, q < 0.01 and βlin

1 =

0.09, q < 0.01), left superior longitudinal fasciculus (SLF) (βlin
1 = 0.07, q 

= 0.01), left retrolenticular part of internal capsule RLIC (βlin
1 = 0.07, q 

= 0.02) and left superior fronto-occipital fasciculus (SFO) (βlin
1 = 0.06, q 

= 0.046). Meanwhile, four WM bundles showed significant quadratic 
age effects (inverted-U-shaped trajectories), including bilateral CST 
(βqua

2 = − 0.07, q < 0.01 for both, Fig. 4B), left superior cerebellar 
peduncle (SCBP) (βqua

2 = − 0.06, q < 0.01) and left medial lemniscus 
(ML) (βqua

2 = − 0.05, q = 0.04). 
During late adulthood, all WM bundles exhibited negative linear age 

effects to some extent (outer circle in Fig. 4A and Table S3). Twenty-four 
bundles exhibited significant linear declines with age (q < 0.05), 

Fig. 3. | Age effects on rsFC of WM- 
GM pairs. (A) Significant age effects 
on WM-GM rsFC over entire adulthood 
(q < 0.05). Each colored node repre
sents a GM parcel assigned to a func
tional network and each gray node 
represents a WM bundle. Blue and red 
curves in the first and second circles 
indicate negative and positive linear 
trends of rsFC between WM bundles and 
GM parcels over age, respectively. The 
green and purple curves in the third 
circle indicate inverted-U- and U-shaped 
quadratic relationships between rsFC 
and age, respectively. (B) Linear age 
effects on rsFC during late adulthood (q 
< 0.01 for clearer visualization). Boxes 
(i), (ii) and (iii) in (A, B) illustrate three 
representative WM-GM pairs, showing 
linear and quadratic trajectories during 
entire adulthood (boxes in A) and late 
adulthood (boxes in B) overlaid on 
kernel density plots of data points. (C) 
Distributions of βlin

1 and βqua
2 for entire 

adulthood fitting and βlin
1 for late adult

hood fitting. (D) GM parcels (Brodmann 
areas) color-coded based on their affili
ated functional networks (i.e., DMN, 
FPN, LN, AN, SMN or VN) and deep WM 
bundles defined by atlases. See Table S3 
for more WM descriptions.   
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including the FX (Fig. 4B), bilateral CGG, MCBP, EC, ICBP, CST (Fig. 4B), 
SCBP, ML, cerebral peduncle (CP), cingulum at hippocampus (CGH), 
superior corona radiata (SCR), left UF, right FXC and RLIC. 

3.4. Age effects on GE of functional networks 

To investigate how normal aging affects the overall communication 
efficiency within WM-GM functional networks, we evaluated the GE of 
six pre-defined functional networks (i.e., DMN, FPN, LN, AN, SMN and 
VN) by projecting WM-GM rsFC bipartite graphs to WM-mediated GM- 
GM rsFC unipartite graphs. The resulting GE values of five networks 
were found associated with age to different extents over the entire 
adulthood (Fig. 5A-E). Specifically, we found significant negative re
lations with age for these networks, among which the DMN (β = − 0.10, 
p < 0.01), FPN (β = − 0.09, p < 0.01), AN (β = − 0.11, p < 0.01), SMN (β 
= − 0.12, p < 0.01) exhibited stronger age-related decline and the LN (β 
= − 0.08, p = 0.014) showed a slightly weaker decline. Although no 
significant age-related association with GE across the entire adulthood 
was found for the VN (β = − 0.03, p = 0.22), the age effect on GE of VN in 
late adulthood was significant (β = − 0.10, p = 0.02) (Fig. 5F, G). 
Moreover, validation analyses using lower and higher thresholds for 
graph construction yielded similar results (Fig. S3). Collectively, these 

results converged to suggest that aging broadly affected the functional 
integrations of multiple WM-mediated networks in the brain. 

4. Discussion 

In this large-scale multi-cohort study, we aimed to identify age ef
fects on WM-GM functional interactions in brain during normal aging 
from both local and systemic perspectives. We hypothesized that the 
architecture of WM-GM rsFC networks would alter with age, supported 
by observations of age-related structural degradations in WM (Cox et al., 
2016; O’Sullivan et al., 2001) and disturbed WM-GM rsFC in changes 
with cognition during the development of Alzheimer’s disease (Gao 
et al., 2019). However, assessing crucial network properties of a 
WM-GM rsFC graph, such as GE, has been difficult due to the absence of 
closed triplets in such a graph. Our work primarily demonstrates (i) a 
proposed novel method including construction of a graph specifically 
tailored to the unique nature of WM-GM rsFC and assessment of the 
network properties; (ii) evidence of age-related alterations in WM-GM 
rsFC and FCD of WM-bundles over long-range adulthood or in late 
adulthood (age ≥ 70 years); and (iii) evidence of loss of integration in six 
WM-mediated functional networks during aging, occurring with varying 
extent and onset. The implications of these findings are expanded below, 

Fig. 4. | Age effects on rsFC density 
(FCD) of WM bundles. (A) Age effect 
on FCD of each WM bundle over entire 
adulthood (bars at inner circle) and late 
adulthood (bars at outer circle). Blue 
and red bars indicate negative and pos
itive linear age effects, respectively. 
Green bars indicate inverted-U-shaped 
age effects. The height of each bar rep
resents βlin

1 or βqua
2 . An asterisk on the 

bar indicates q < 0.05. (B) Three ex
amples showing trajectories of FCD over 
adulthood (left column) and late adult
hood (right column). The βlin

1 or βqua
2 and 

corresponding q values for all WM 
bundles are summarized in Table S3.   

Fig. 5. | Age associations with global 
efficiency (GE, adjusted z-score) of 
six WM-mediated functional net
works. The upper plots highlight the 
GM parcels assigned to each functional 
network, namely default mode network 
(DMN), fronto-parietal network (FPN), 
limbic network (LN), attention network 
(AN), somatomotor network (SMN), and 
visual network (VN). In the lower plots, 
the regression line with 95% confidence 
intervals shown for each network in
dicates the relationship of GE with age 
throughout the entire adulthood. The 
value β represents standardized coeffi
cient of age in multiple linear regression 
over the entire adulthood, and β70 over 
late adulthood. * indicates p < 0.05 and 

** indicates p < 0.01, corrected for multiple comparisons.   
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as well as the limitations of the methods. 

4.1. Extendable bipartite WM-GM rsFC model 

To our knowledge, this study represents the first attempt to introduce 
a bipartite graph model for characterizing the WM-GM rsFC network 
and evaluating the challenging network property, GE, through bipartite- 
to-unipartite projection. In the projected WM-mediated GM-GM 
network, other challenging properties such as clustering coefficient can 
also be readily evaluated. Moreover, the projection is not limited to the 
transformation defined by Eq. (2). Alternative transformations can be 
easily applied in a similar manner. 

Previous studies investigating WM-GM FC for brain abnormalities, 
including neuropsychiatric disorder and neurodegenerative disease 
(Gao et al., 2021, 2020; Liu et al., 2022; Yang et al., 2020), have focused 
on exploring less challenging network properties. In contrast, our 
bipartite model enables researchers to assess broader network proper
ties, thereby expected to have wide prospects for applications. 

4.2. Patterns of age-related alterations 

Throughout the core measurements in our study (i.e., rsFC of WM- 
GM pairs, FCD of WM bundles and GE of projection of WM-GM net
works), we found at least three common patterns of age-related func
tional alterations – reductions in adulthood, reductions in late- 
adulthood and relative stability of function with age. These contrast
ing patterns hint that aging influences certain WM functional architec
tures disproportionately. Similar patterns have also been mentioned 
explicitly or implicitly in previous reports on GM-GM rsFC changes 
(Andrews-Hanna et al., 2007; Jockwitz and Caspers, 2021) and 
age-related behavioral alterations (Hedden and Gabrieli, 2004). 

4.3. Degradations of WM bundles 

The WM bundles exhibiting significantly lower FCD towards aging in 
this study, regardless of the adulthood period in which they occur, have 
been associated with cognition, sensory-motor processing, and visual 
perception. Specifically, half of the bundles (i.e., FX, FXC, CGG, CGH, 
UF, EC and SCR) are frontal-parietal-temporal or frontal-temporal fibers 
and have been demonstrated to play important roles in higher-order 
cognitions such as episodic/working memory, executive control and 
emotion, all of which decline with age (Bendlin et al., 2010; Bubb et al., 
2018; Douet and Chang, 2015; Hedden and Gabrieli, 2004; McLaughlin 
et al., 2003; O’Sullivan et al., 2001; Papagno et al., 2011). The 
remaining bundles (i.e., MCBP, ICBP, CST, SCBP, ML, CP and RLIC) have 
been mainly associated with sensory-motor processing and visual pro
cessing (Johns, 2014; Kim et al., 2014; Morales and Tomsick, 2015; 
Navarro-Orozco and Bollu, 2022; Ribas et al., 2018), both of which also 
show declines in aging regarding processing speed of motor responses 
and visuospatial ability to complete complex tasks (Navarro-Orozco and 
Bollu, 2022; Salthouse, 2010). Therefore, our observations contribute 
further evidence of the neural substrates underlying age-related cogni
tive declines. 

These observed WM-bundle-wise changes in BOLD synchronization 
may be driven by several factors. First, age-related microstructural 
changes detected by diffusion MRI (Barrick et al., 2010; Bendlin et al., 
2010; Burzynska et al., 2010; Cox et al., 2016; Davis et al., 2009), 
probably reflecting loss of axons and demyelination (Salvadores et al., 
2017), have been reported in WM, and may impact the WM function. 
Second, deterioration and volume loss in the GM parcels connected to 
the WM bundles during aging could also play a role (Marstaller et al., 
2015). Third, BOLD fluctuations depend on cerebral blood flow and 
metabolism (Tsvetanov et al., 2015), and PET/MRI evidence has shown 
reduced baseline cerebral blood flow in elder populations (Martin et al., 
1991; Stoquart-ElSankari et al., 2007). Moreover, these factors may be 
intertwined. For example, the disturbance in the rsFC between CGG and 

BA32 (dorsal anterior cingulate cortex) might be partially caused by 
age-related effects such as disrupted CGG microstructure, decreased 
cingulate volume, reduced metabolism and cerebral blood flow (Mann 
et al., 2011; Pardo et al., 2007; Vaidya et al., 2007; Westlye et al., 2010). 

Interestingly, the FCD of bundles SCC, SS, PTR, ACR, SLF, RLIC and 
SFO were found to be positively affected by age across adulthood, 
despite the microstructural impairments reported in these bundles with 
age (Barrick et al., 2010; Bendlin et al., 2010; Cox et al., 2016). Several 
of these bundles also overlap with common regions of age-related WM 
hyperintensities (Habes et al., 2018), which may affect FC measures 
(Jaywant et al., 2022; Tsvetanov et al., 2015). This observation suggests 
the presence of an over-recruitment or/and compensation mechanism 
via network reorganization in WM, similar to the over-recruitments of 
GM regions reported at rest and during cognitive tasks (Grady et al., 
2016). In addition, significant increases in these bundles were absent 
during late adulthood and may be due to increased degeneration of 
underlying tissues such as neurons, axons, synapses or/and vasculature 
that occurs with more advanced age. 

4.4. Dissolved integration of WM-mediated networks 

In one WM-mediated network, a reduced GE implies disrupted or 
even absent communication between nodes within the network. Our 
results indicate that as the brain ages, all six networks lose their ability 
to efficiently combine information from distributed parts, especially the 
DMN, AN and SMN, which agrees with previous aging studies using 
conventional GM-GM graphs at rest (refer to Table S1 for a mini sum
mary of the relevant literature and two reviews (Deery et al., 2023; 
Jockwitz and Caspers, 2021). At least some of the age-dependent de
clines in GE may be driven by alterations in anatomical connectivity and 
energy demands (Salat, 2011). 

Taking the rsFC-wise, bundle-wise and network-wise observations 
together, we may speculate on how the WM architecture reflects overall 
brain function. For example, we found FCD of the bundles SCC and SS 
increased with age as did the rsFC between these bundles and GM nodes 
in DMN. The functional integration of the WM-mediated DMN, as well as 
all other networks, still decreased however, suggesting that local 
compensation may not always suffice to prevent global deterioration of 
a functional circuit. 

4.5. Limitations 

In the present study, (Newman et al., 2001) the WM bundles utilized 
were relatively thick units and were delineated based on diffusion 
tractography-inferred anatomy (Mori et al., 2008). Several WM bundles, 
such as the fornix and cingulum, anatomically branch into more than 
one cortical region along their individual fiber pathways (Schmahmann 
and Pandya, 2009), suggesting that a single WM bundle may function
ally contribute to multiple networks. Therefore, we included all WM 
bundles in each functional network for graph construction and GE 
assessment. Further investigation into a more refined bundle delineation 
that allows for a finer ‘functional resolution’ could be worthwhile. 

Additionally, it is important to note that fMRI measures in both GM 
and WM are inherently indirect measures of neural activity, depending 
on neurovascular coupling. Changes in vascular properties in the brain 
and hemodynamic responses to energy demands may occur indepen
dently of changes in neural activity. Therefore, caution should be 
exercised when interpreting the results. 

5. Conclusions 

In conclusion, this study presents an extendable graph model that 
characterizes the unique nature and measures challenging properties of 
the WM-GM rsFC network. Based on this model, the study also presents 
large-scale analyses, revealing that WM-GM rsFC and FCD of WM bun
dles associated to higher-order cognition and sensory-motor processing 

Y. Gao et al.                                                                                                                                                                                                                                     



NeuroImage 278 (2023) 120277

8

undergo age-related declines during adulthood. The same metrics of w 
WM bundles predominantly decline in late adulthood. At the system 
level, the DMN, AN, SMN, FPN, LN and VN all exhibit reduced functional 
cohesiveness with age, with varying extents during adulthood or late 
adulthood. This study fills both methodological and knowledge gaps in 
the WM-GM FC network of the aging human brain, providing insights 
into the missing piece – WM-engaged function – in the puzzle of the 
human connectome. 
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Burzynska, A.Z., Preuschhof, C., Bäckman, L., Nyberg, L., Li, S.C., Lindenberger, U., 
Heekeren, H.R., 2010. Age-related differences in white matter microstructure: 
region-specific patterns of diffusivity. Neuroimage 49, 2104–2112. https://doi.org/ 
10.1016/j.neuroimage.2009.09.041. 

Chan, M.Y., Park, D.C., Savalia, N.K., Petersen, S.E., Wig, G.S., 2014. Decreased 
segregation of brain systems across the healthy adult lifespan. Proc. Natl. Acad. Sci. 
111, E4997–E5006. https://doi.org/10.1073/pnas.1415122111. 

Cox, S.R., Ritchie, S.J., Tucker-Drob, E.M., Liewald, D.C., Hagenaars, S.P., Davies, G., 
Wardlaw, J.M., Gale, C.R., Bastin, M.E., Deary, I.J., 2016. Ageing and brain white 
matter structure in 3,513 UK Biobank participants. Nat. Commun. 7, 13629. https:// 
doi.org/10.1038/ncomms13629. 

Damoiseaux, J.S., Beckmann, C.F., Arigita, E.J.S., Barkhof, F., Scheltens, Ph., Stam, C.J., 
Smith, S.M., Rombouts, S.A.R.B., 2008. Reduced resting-state brain activity in the 
“default network” in normal aging. Cereb. Cortex 18, 1856–1864. https://doi.org/ 
10.1093/cercor/bhm207. 

Y. Gao et al.                                                                                                                                                                                                                                     

http://www.fnih.org
http://adni.loni.usc.edu/data-samples/access-data/
http://adni.loni.usc.edu/data-samples/access-data/
https://central.xnat.org/data/projects/OASIS3
https://central.xnat.org/data/projects/OASIS3
https://www.blsa.nih.gov
https://www.blsa.nih.gov
https://github.com/VUIIS/SCZ-WM-pipeline?organization=VUIIS&tnqh_x0026;organization=VUIIS
https://github.com/VUIIS/SCZ-WM-pipeline?organization=VUIIS&tnqh_x0026;organization=VUIIS
https://github.com/Jfortin1/neuroCombat_Rpackage
https://github.com/Jfortin1/neuroCombat_Rpackage
https://github.com/gaoy3/bipartite
https://doi.org/10.1016/j.neuroimage.2023.120277
https://doi.org/10.1371/journal.pcbi.0030017
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1016/j.neuron.2007.10.038
https://doi.org/10.1073/pnas.0400087101
https://doi.org/10.1073/pnas.0400087101
https://doi.org/10.1016/j.neuroimage.2010.02.033
https://doi.org/10.1016/j.neuroimage.2010.02.033
https://doi.org/10.1080/87565641003696775
https://doi.org/10.1080/87565641003696775
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1016/j.neuroimage.2014.07.067
https://doi.org/10.1016/S0378-8733(96)00301-2
https://doi.org/10.1016/j.neubiorev.2018.05.008
https://doi.org/10.1016/j.neubiorev.2018.05.008
https://doi.org/10.1016/j.neuroimage.2009.09.041
https://doi.org/10.1016/j.neuroimage.2009.09.041
https://doi.org/10.1073/pnas.1415122111
https://doi.org/10.1038/ncomms13629
https://doi.org/10.1038/ncomms13629
https://doi.org/10.1093/cercor/bhm207
https://doi.org/10.1093/cercor/bhm207


NeuroImage 278 (2023) 120277

9

Davis, S.W., Dennis, N.A., Buchler, N.G., White, L.E., Madden, D.J., Cabeza, R., 2009. 
Assessing the effects of age on long white matter tracts using diffusion tensor 
tractography. Neuroimage 46, 530–541. https://doi.org/10.1016/j. 
neuroimage.2009.01.068. 

Deery, H.A., Di Paolo, R., Moran, C., Egan, G.F., Jamadar, S.D., 2023. The older adult 
brain is less modular, more integrated, and less efficient at rest: a systematic review 
of large-scale resting-state functional brain networks in aging. Psychophysiology 60, 
e14159. https://doi.org/10.1111/psyp.14159. 

Ding, Z., Huang, Y., Bailey, S.K., Gao, Y., Cutting, L.E., Rogers, B.P., Newton, A.T., 
Gore, J.C., 2018. Detection of synchronous brain activity in white matter tracts at 
rest and under functional loading. Proc. Natl. Acad. Sci. U. S. A. 115 https://doi.org/ 
10.1073/pnas.1711567115. 

Douet, V., Chang, L., 2015. Fornix as an imaging marker for episodic memory deficits in 
healthy aging and in various neurological disorders. Front. Aging Neurosci. 6 
https://doi.org/10.3389/fnagi.2014.00343. 

Fortin, J.P., Cullen, N., Sheline, Y.I., Taylor, W.D., Aselcioglu, I., Cook, P.A., Adams, P., 
Cooper, C., Fava, M., McGrath, P.J., McInnis, M., Phillips, M.L., Trivedi, M.H., 
Weissman, M.M., Shinohara, R.T., 2018. Harmonization of cortical thickness 
measurements across scanners and sites. Neuroimage 167, 104–120. https://doi.org/ 
10.1016/j.neuroimage.2017.11.024. 

Friston, K.J., Williams, S., Howard, R., Frackowiak, R.S.J., Turner, R., 1996. Movement- 
related effects in fMRI time-series. Magn. Reson. Med. 35 https://doi.org/10.1002/ 
mrm.1910350312. 

Gao, Y., Lawless, D., Li, M., Zhao, Y., Schilling, K., Xu, L., Shafer, A., Beason-Held, L., 
Resnick, S., Rogers, B., Ding, Z., Anderson, A., Landman, B., Gore, J., 2023. 
Automatic preprocessing pipeline for white matter functional analyses of large-scale 
databases. In: Proc. SPIE, p. 124640U. https://doi.org/10.1117/12.2653132. 

Gao, Y., Li, M., Huang, A.S., Anderson, A.W., Ding, Z., Heckers, S.H., Woodward, N.D., 
Gore, J.C., 2021. Lower functional connectivity of white matter during rest and 
working memory tasks is associated with cognitive impairments in schizophrenia. 
Schizophr. Res. 233, 101–110. https://doi.org/10.1016/j.schres.2021.06.013. 

Gao, Y., Li, M., Zu, Z., Rogers, B.P., Anderson, A.W., Ding, Z., Gore, J.C., 2019. 
Progressive degeneration of white matter functional connectivity in Alzheimer’s 
disease. In: Proc. SPIE, p. 109530C. https://doi.org/10.1117/12.2512919. 

Gao, Y., Sengupta, A., Li, M., Zu, Z., Rogers, B.P., Anderson, A.W., Ding, Z., Gore, J.C., 
2020. Functional connectivity of white matter as a biomarker of cognitive decline in 
Alzheimer’s disease. PLoS One 15, e0240513. https://doi.org/10.1371/journal. 
pone.0240513. 

Gaser, C., Dahnke, R., Thompson, P., Kurth, F., Luders, E., Alzheimer’s Disease 
Neuroimaging Initiative, 2022. CAT – A computational anatomy toolbox for the 
analysis of structural MRI data. bioRxiv. https://doi.org/10.1101/ 
2022.06.11.495736. 

Geerligs, L., Renken, R.J., Saliasi, E., Maurits, N.M., Lorist, M.M., 2015. A brain-wide 
study of age-related changes in functional connectivity. Cereb. Cortex 25, 
1987–1999. https://doi.org/10.1093/cercor/bhu012. 

Gore, J.C., Li, M., Gao, Y., Wu, T.L., Schilling, K.G., Huang, Y., Mishra, A., Newton, A.T., 
Rogers, B.P., Chen, L.M., Anderson, A.W., Ding, Z., 2019. Functional MRI and resting 
state connectivity in white matter - a mini-review. Magn. Reson. Imaging 63. 
https://doi.org/10.1016/j.mri.2019.07.017. 

Grady, C., Sarraf, S., Saverino, C., Campbell, K., 2016. Age differences in the functional 
interactions among the default, frontoparietal control, and dorsal attention 
networks. Neurobiol. Aging 41, 159–172. https://doi.org/10.1016/j. 
neurobiolaging.2016.02.020. 

Habes, M., Erus, G., Toledo, J.B., Bryan, N., Janowitz, D., Doshi, J., Völzke, H., 
Schminke, U., Hoffmann, W., Grabe, H.J., Wolk, D.A., Davatzikos, C., 2018. Regional 
tract-specific white matter hyperintensities are associated with patterns of aging- 
related brain atrophy via vascular risk factors, but also independently. Alzheimer’s 
Dement. Diagn. Assess. Dis. Monit. 10, 278–284. https://doi.org/10.1016/j. 
dadm.2018.02.002. 

Hedden, T., Gabrieli, J.D.E., 2004. Insights into the ageing mind: a view from cognitive 
neuroscience. Nat. Rev. Neurosci. 5, 87–96. https://doi.org/10.1038/nrn1323. 
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